数列考试总结 第1篇
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的
否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
易错点6 求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函
数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。 易错点7 带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点8 求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的`定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
易错点9 抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
易错点10 函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
易错点11 混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
易错点12 混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
易错点13 导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
易错点14 用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。 易错点15 an,Sn关系不清致误
数列考试总结 第2篇
2020高考数学复习数列知识点汇总
1.高二数学数列知识点数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列
1.等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+xxx··+an
=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n-1)d]①
Sn=an+an-1+an-2+xxxxxx+a1
=an+(an-d)+(an-2d)+xxxxxx+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*
三、若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N*,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
等比数列
1.等比中项
如果在a与b中间插入一个数G,使a,G,xxx等比数列,那么G叫做a与b的等比中项。
有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
2.等比数列通项公式
an=a1*q’(n-1)(其中首项是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q’n)/(1-q)=(a1-a1*q’n)/(1-q)(q≠1)
当q=1时,等比数列的前n项和的公式为
Sn=na1
3.等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比数列性质
(1)若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和xxx等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:q、r、xxx等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)
(6)任意两项am,an的关系为an=am·q’(n-m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
2020高考数学复习技巧总结
1.先看笔记后做作业。
有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。
因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。
2.做题之后加强反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。
数列考试总结 第3篇
一、试卷的结构分析
主要包括:
1.内容结构分析:基本概念和化学原理、元素化合物知识、有机化学知识、化学计算、化学实验等方面的内容比例乃至每一方面的二级结构分析。
2.目标水平结构分析:按照考试大纲所列水平(通常分为知道、理解、应用、综合运用等)种类,分析它们的组成比例并且作内容—水平双向交*分析。
3.题型结构分析:各类题型的比例分析。
4.分数结构分析:内容—分数和水平—分数的双向交*分析。
5.难度和时限结构分析:对难度测验作难度分布描述,对速度测验作时限分布描述。
6.试卷特点及横向、纵向比较:就试卷是否符合考试(教学)大纲规定、是否反映化学学科特点和内在联系、符合学生实际水平、合理性、适宜性以及其他特点作出描述和判断。横向比较可以在学校—学校或地区—地区间进行,纵向比较可以在不同学年间进行。
进行结构分析时,分析者要对测验各项目逐一分析和作出判断,因而结构分析带有较强的主观色彩。分析者对项目的判断跟编制、设计者不一致的情况经常会发生,对于比较复杂的综合题尤其是这样。为此可以把试卷结构分析结果跟编制试卷的结构设计进行比较。
除了难度结构分析跟答卷情况有关,只有在考试实施之后才能进行外,其他各项分析跟答卷情况无关,在考试实施之前就可以进行,属于试卷的“静态”分析。
二、答卷情况描述
主要包括:
1.成绩分布情况描述:列出频数分布表或频数分布图。
2.统计量描述:列出平均分、标准差、优分率和低分率以及某些因素间的相关系数等数据,还可以进一步作各内容跟其平均得分率、标准差、优分率和低分率的双向交*分析,各水平层次跟其平均得分率、标准差、优分率和低分率的双向交*分析,以便从中发现问题。
3.分布形态判断:判断总体分布是正态还是偏态或其它形态。
4.由样本统计量推测总体参数(总体平均成绩、总体标准差等)。
三、试题及解答情况分析
1.题目的内容、水平分析:逐一分析各题的内容、水平和考核意图。
2.题目的难度、区分度、灵敏度、识别度和题目反应分布:具体方法参见文后所附题目分析部分。
四、试卷质量分析
1.试卷的信度分析和效度分析。参见文后所附“试卷的信度分析和效度分析。”
2.整卷难度分析。
3.试卷质量评价:就考试目的和试卷内容、结构、形式的合理性、适宜性、有效性和可行性等对试卷作出全面评价。
五、教学分析和教学建议
从得分、失分情况以及某些部分之间的比较、分析,发现教师、学生以及命题等方面的成功与不足之处,并针对存在问题提出改进意见。
为了使试卷分析全面、可靠和有效地发挥应有作用,试卷分析工作应实行教师分析和学生自我分析结合、“动态”分析和“静态”分析结合、定性分析和定量分析结合,在认真分析的基础上,简明、扼要、有重点地写出试卷分析报告。
附:题目和试卷的统计分析方法
一、常模参照性测验的题目分析
常模参照性测验题目的分析工作,主要是对测验结果进行统计分析,估计题目的难度、区分度,分析答案是否适宜等。
1.难度分析
所谓题目难度是指某一题目的难易程度,通常用答对率P来表示。
一般说来,题目的P值以为宜。也有人用不通过率xxx表示难度。它们的计算方法如下表所示:
*X高为高分组的该题得分总和,X低为低分组的该题得分总和,H、L分别为该题的最高、最低得分。
P值无等距性,无法对试题之间的难度差异作精确的比较,也不能用于计算平均难度。为了对各题难度作比较,通常要把P转换成标准难度,使之等距化。
值越大,题目难度越大;=13时,题目难度为中等。
运用下表可以方便地由P值直接查得对应的值:
2.区分度分析
题目区分度是指某一题目对被测水平的区分能力。若某题目能使水平较高的被测得较高分、使水平较低的被测得较低分,该题就有较高的区分度。
区分度分析可以采用极端分组法,或者采用相关法。相关法比较复杂,这里从略,不作介绍。在极端分组法中,从总体中分出高分组和低分组(比例均为25%~33%且数值相同),然后计算区分指数D作为区分度的指标,如下表所示:
除了计算方法以外,还可以采用xxx根查表法:根据占总人数27%的高分组的答对率和占总体人数27%的低分组的答对率,从专门的表(附表5)中查得题目的区分度。
一般说来,当D<时,题目的区分度太低,必须淘汰或者加以修改;当D≥时,题目的区分度非常好;通常题目的区分度指数D在之间。题目难度跟题目区分度之间有着一定的联系。难度太大或者太小,都可能使区分度变小;只有难度适中时,才可能有较高的区分度。
3.题目反应分布分析
对于多重选择题等可能有多种答题情况(题目反应)的题型来说,仅仅作难度分析和区分度分析是不够的,还需要分析题目反应分布情况,检查它是否跟预期的反应分布模式符合,从而发现需要修改之处。题目的难度和区分度也可以从反应分布中得到反映。进行题目反应分布分析,先要制作题目反应分布表。下面是该表的示例,表中还列出了有关的分析和判断:
*为答对人数
二、目标参照性测验的题目分析
目标参照性测验题目试测后的分析工作主要是作灵敏度分析和识别度分析,有时也要作题目反应分布分析。
1.灵敏度分析所谓灵敏度是指题目能灵敏地反映教学作用的能力,通常用目标教学前后被测总体的通过率之差来估计。
设目标教学前、后通过试题的被测人数分别为R1、R2,被测总体人数为N,则试题对教学 的灵敏度指数S可按下式计算:
当S>0时,试题有效,S越大,试题对教学作用的感受越灵敏;当S≤0时,需要研究是否由教学不当而引起,如非教学不当引起,则可认为试题质量不佳。
2.识别度分析
题目识别度是指某试题能有效地识别达标者的能力,通常用合格者通过本题的百分比跟不合格者通过本题的百分比之差来估计。
设P1和P2分别为合格者和不合格者的本题通过率,则
识别度指标D=P1-P2
识别度指标的最大值为,当D≤0时,该题无预期的识别能力。
题目识别度还可以用被测是否合格跟是否通过本题的φ相关系数来表示。设题目在总人数为N
的被测总体中的试测结果如下表所示:
所得φ相关系数需进行检验,方法是:按下式算出φx2
x2=Nφ2
的,其犯错误可能性为。
3.题目反应分布分析
目标参照性测验的题目反应分布分析方法跟常模参照性测验的分析方法相似。通过分析不但可以发现题目中存在的问题,还可以了解被测的错误类型及其分布,具有学习诊断作用。
三、试卷的信度分析
信度表示测量的一致性、稳定性和测量结果的可靠性。测量时的随机误差越小,测量结果就越接近真实值,其信度就越高;样本统计量越是接近总体参数,其信度也越高。
信度常用信度系数r__表示,其值在0~1之间。若r__=0,表明实得分数完全由偶然误差决定;若r__=1,表明实得分数完全不受偶然误差的影响。一般说来,化学学业成绩测验的信度应在以上,甚至达到。
由于Sr和xxx于直接测得,所以r__通常借助于某些特别方法进行计算。
(一)常模参照测验信度的计算
常模参照测验的信度系数可以用再测法、等价测验法和两半法等方法求得,所得信度系数意义略有不同,分别表示测量的再测稳定性、等价测量稳定性和内在一致性,故又分别称为稳定性系数、等价性系数和内部一致性系数。在化学教学测量中,常用下列方法计算内部一致性系数。
1.两半法,即在一次施测后,把试题分为对等、可比的两半,其内容、预测难度、总分和题数都大致相同;计分时把各被测的两半实得总分分开统计,计算两半间的积差相关系数;
式中,x、y分别为某被测实得的两半总分,N为被测总数。
再将rhh代入下式校正,即可得整卷的信度系数r__。
采用这一校正公式时,两半的平均数、标准差、项目的组间相关、分布的形态和内容都应相近。否则,整个测验的信度估计r__将有误差。此时可改用下式计算r__:
式中,Sa、Sb分别为两半分数的标准差,St为整个测验总分方差,Sd为两半分数之差的标准差。
2.克龙巴赫法
方差。
影响测验信度的因素主要有:
(1)测验长度:测验越长,题量越大,信度越高。
(2)试题难度:当各题难度和平均难度为中等(P=)时,有利于提高测验的信度。
(3)样本(或总体)大小:样本(或总体)越大,分数分布越广,信度越高。
(4)测验内容的复杂性:测验内容同质性高,信度也高;反之,内容越庞杂,信度就越低。
(5)施测条件的标准化,有利于减小随机误差的影响。
(6)评分的客观性。
(二)目标参照测验信度的计算
复本法:以等价的两份测验对同一被测群体施测,设测验结果的分布情况如下表所示:
四、试卷的效度分析
效度表示测量跟测量目的符合的程度,是测量准确性和有效性的指标。跟测验目的无关的因素影响越小,测验的有效性即效度就越高。
(一)常模参照测验的效标关联效度
在确定常模参照测验的效度时,通常以另一比较符合测量目的的测量结果作为检测效度的参照标准(即效标)。设被测总数为N,x和y分别为被测i的本次测得成绩和效标成绩,则
若已将成绩转换成Z标准分,则
rxy>0时,说明两者相关(正相关),rxy值越大相关程度也越大;rxy=1时表示测量完全反映测量的目的;rxy=0时,表明两组分数完全不相关(零相关)测量结果跟测量目的无关;rxy<0时为负相关,表明一测量得分高者另一测量得分低,测量结果跟测量目的完全相反。一般情况下,化学学业成绩测验的效度应在之间
系统误差和随机误差跟实得分数方差比值的大小影响着效度的高低,要提高效度,就必须:
(1)提高测验的信度,减小随机误差的影响。
(2)施测标准化、评分标准化、采用适宜的分数合成方法,减少与测验的目的无关的因素,尽量降低系统误差的影响。题文难于理解、数学计算过于复杂等,均会降低测验的效度。
(3)提高命题质量。试题太少、偏、怪,覆盖面小、编排不当、过难过易等,都会影响效度。
(4)增大样本容量、使之具有较好的代表性。
(5)选择可靠(信度高)、符合测量目的的测验作效标。
效度系数也可以视具体情况改用二列相关系数或者点二列相关系数、φ相关系数等来表示。
(二)目标参照测验的效度
目标参照测验要求测量结果的变异最好为零,故不能用变异量来表示其效度。此时,可以通过内容适宜性来确定其效度。
五、试卷难度分析
试卷难度跟试题难度相似,可以用得分率表示:
数列考试总结 第4篇
关键词:古典概型;教学设计
■教材分析
本节课是人教A版高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的. 古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.
■教学目标
1. 知识与技能
(1)理解基本事件的特点;
(2)通过实例,理解古典概型及其概率计算公式;
(3)会用列举法计算一些简单随机事件发生的概率.
2. 过程与方法
根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.
3. 情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.
■重点、难点
重点:理解古典概型的概念及其概率计算公式.
难点:如何判断一个试验是否是古典概型:有限性和等可能性.
■教学内容
一、温故知新
1. 什么是互斥事件?_____________________________
2. 什么是对立事件?_____________________________
3. 概率的加法公式. _____________________________
师生互动:
教师:提出问题.
学生:各组派代表抢答.
设计意图:
引导学生回忆前面所学知识,为学习本节课的新知识奠定基础.
二、创设情境
思考一:
看下面两个试验,分析事件的构成,回答下列问题
1. 试验一:“抛掷一枚质地均匀的硬币”.
(1)试验的结果有几个?_____________________________
(2)它们之间的关系是什么?________________________
2. 试验二:“掷一枚质地均匀的骰子”,看书P119页探究.
(1)试验的结果有几个??摇?摇___________________________?摇
(2)它们之间的关系是什么?________________________
(3)事件D2、D3、G,H与C1、C2、C3、C4、C5、C6之间的关系是什么?_________________________________________________
师生互动:
教师创设情境,为导入新知做准备.
设计意图:
随着问题的提出,激发了学生的求知欲望,提高学生的学习积极性,提高学习数学的兴趣.
基本事件的概念:一次试验可能出现的每一个结果称为一个基本事件.如:试验1中的“正面朝上”、“正面朝下”;试验2中的出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.
思考二:
(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
基本事件的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.
师生互动:
学生回答两个问题,教师适时引出基本事件的两个特点,并加以说明,加深新概念的理解.
设计意图:
问题的引导可以使学生更好地把握问题的关键;培养学生分析问题的能力.
三、实践认知
例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了解基本事件,我们可以用列举法把所有可能的结果都列出来.画树状图是列举法的基本方法,一般分布完成的结果(两步或两步以上)可以用树状图进行列举.
解:所求的基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.
师生互动:
初步感知,熟悉构成任何事件的基本事件;先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点.
设计意图:
将数形结合和分类讨论的思想渗透到具体问题中来.
思考三:
以下每个基本事件出现的概率是多少?
试验1:P(“正面朝上”)=P(“反面朝上”)=■;
试验2:P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=■.
思考四:
观察对比,找出试验1和试验2的共同特点:
经观察,概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个(有限性);
(2)每个基本事件出现的可能性相等(等可能性).
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型.
师生互动:
让学生先观察对比,找出两个试验的共同特点,再概括总结得到的结论,教师最后补充说明.
设计意图:
培养学生运用从具体到抽象、从特殊到一般的归纳推理能力.
xxx:你能举出几个生活中的古典概型的例子吗?
师生互动:
关注学生对生活中古典概型的认识和了解,教师根据学生回答适当点评.
设计意图:
通过教师的介绍,学生能够体会到生活中处处有古典概型,感受到数学的实际应用.
四、观察比较,推导公式
思考六:
古典概型下,基本事件出现的概率是多少?随机事件出现的概率又该如何计算?
试验2:掷一颗均匀的骰子,事件A为“出现偶数点”,请问事件A的概率是多少?
探讨:基本事件的总数为6,事件A包含3个基本事件:“2点”、“4点”、“6点”,则P(A)=P(“2点”)+P(“4点”)+P(“6点”)=■+■+■=■=■,
即P(“出现偶数点”)=■=■.
由上可以概括总结出,古典概型计算任何事件的概率计算公式为:
P(A)=■.
提醒:
在使用古典概型的概率公式时,应该注意:要判断所用概率模型是不是古典概型(前提).
师生互动:
教师提出问题,引导学生分析试验2中“出现偶数点”这一事件的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系.
设计意图:
鼓励学生运用观察类比和从具体到抽象、从特殊到一般的方法来分析问题,突出了古典概型的概率计算公式这一重点.
五、反馈矫正
例2 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是9的结果有多少种?
(3)向上的点数之和是9的概率是多少?
解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1、2,以便区分.由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果. (可由列表法得到)
由表中可知同时掷两个骰子的结果共有36种.
(2)在上面的结果中,向上的点数之和为9的结果有4种,分别为:
(3,6),(4,5),(5,4),(6,3).
(3)由于所有36种结果是等可能的,其中向上点数之和为9的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得:
P(A)=■=■=■.
师生互动:
教师对学生没有注意到的关键点加以说明.
设计意图:
加深对古典概型的理解(尤其是等可能性),巩固学生对已学知识的掌握.
思考与探究:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
如果不标上记号,类似于(3,6)和(6,3)的结果将没有区别. 这时,所有可能的结果将是:
P(A)=■=■.
观察下面两对骰子:
上面左右两组骰子所呈现的情况,可以让我们很容易地感受到,这是两个不同的基本事件.
设计意图:建立有效的模型,能缩短解决问题的时间,锻炼学生的数学思维.
■巩固提高
练习:1. 单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案.假设某考生不会做,他随机地选择一个答案,则他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案的可能性是相等的.从而由古典概型的概率计算公式得:P(“答对”)=■=■.
探究:如果该题是不定项选择题,假如某考生也不会做,那么他能够答对的概率为多少?此时比单选题容易了,还是更难了?
2. 从1,2,3,4,5,6,7,8,9这九个自然数中任选一个,所选中的数是3的倍数的概率是_______________.
3. 从装有3个红球、2个白球的袋中任取3个球,求所取的3个球中至少有1个白球的概率.
4. 从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数b,求b>a的概率.
师生互动:引导学生用列表的方式来列举试验中的基本事件的总数.
设计意图:随堂练习,及时巩固新知.
■课后作业
(必做)课本130页练习第1,2题课本134页习题组第4题、6题
(选做)课本134页习题B组第1题
设计意图:
学生通过作业,及时反馈,巩固所学知识;教师通过分层次布置作业,提高了学生的学习效率,同时能在作业中发现教学的不足.
■教法、学法及评价分析
(一)教法分析
根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来. 最后在例题中加入模型的展示,帮助学生突破教学难点.
(二)学法分析
学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象、由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神.
数列考试总结 第5篇
做为高三数学教师,带领学生进行复习备考是主要任务,高三数学总复习分三轮:
第一轮,时间为8月初至明年3月初,按照教材章节顺序复习。复习以知识点为主线,以低、中档题为主体,对所有的基础知识、基本技能、基本方法进行全方位、系统、细致的复习。复习中,培养学生认真记笔记、经常看笔记的好习惯。
第二轮,时间为明年的3月中旬至4月底,复习以做高考模拟试题为主线,适当穿插由选择题和填空题组成的小试卷。试题要上难度,对重点、难点,要强化训练,对易错点,要反复强调。根据学生对模拟试题所做的情况,结合试卷,对重点、难点、易错点,适当地进行专题讲解。复习中,督促学生整理笔记,将笔记本变薄。
第三轮,时间为明年的5月初至5月底,复习仍以做高考模拟试题为主线,适当穿插由选择题和填空题组成的小试卷,但更注重有针对性的进行查漏补缺,强调回归课本。
然而由于各班级的情况又有所不同,如何进行高三的数学复习,据自己的教学研究及实践特提出自己的做法、想法以供同仁商讨。依据历年高考题将数学分为下列几个部分进行第一轮的复习:集合与简易逻辑;函数与导数;数列与极限;三角函数;平面向量;不等式;直线与圆、圆锥曲线;立体几何;排列、组合二项式;概率与统计;复数。具体操作过程:
一、注重点拨,优化课堂结构,落实第一轮复习
在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则教育家xxx林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好……让学生通过自己的努力去理解的东西才能成为自己的东西,才是他真正掌握的东西。”按我们的说法就是:师傅的任务在于度,徒弟的任务在于悟。数学课堂教学必须废除“注入式”“满堂灌”的教法。复习课也不能由教师包讲,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极地探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性。作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心。复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。采用“画骨附肉”法较好地解决这个问题,比如复习函数与导数时老师首先让同学们在课堂上分组合作作出一次函数、二次函数、反比例函数、指数函数、对数函数、对勾函数、三角函数的图像,然后让同学们研究函数的性质:定义域;值域;单调性;奇偶性;周期性;对称性;连续性。再精选一部分习题,让同学们自己尝试解决,使同学们在知识的运用过程中加深对知识的领悟。而老师只是在学生受阻的某一点或某几点上恰当点拨。图像是骨,性质是肉。
二、重点知识重点讲解,提高复习课解题教学的目的性
在复习时,由于解题的量很大,就更要求我们将解题活动组织得有目的性,生动活泼、情趣盎然。如在复习数列时,大量的习题都是在求数列的和及求数列的通项,而要达到目的应得找到工具(即方法)如求和常法:公式、分组、裂项相消、错位相减、倒序相加。关键找通项结构。分组法求数列的和:如an=2n+3n、错位相减法求和:如an=(2n-1)2n、裂项法求和:如求和: _________倒序相加法求和:如①求证: ;
而求通项常用的方法:
(1)已知数列的前n项和Sn,求通项an,可利用公式:
如:数列{an}满足 ,求an(答: )
(2)先猜后证如2006年理22设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,…。
(Ⅰ)求a1,a2;
(Ⅱ){an}的通项公式。
(3)递推式为an+1=an+f(n)(采用累加法);an+1=an×f(n)(采用累积法);
如已知数列{an}满足a1=1, (n≥2),则an =_________
(4)构造法形如an=kan-1+b(k,b为常数)的递推数列――构造成等比
如2007年理21设数列{an}的首项 。
(1)求{an}的通项公式;
(2)设 ,证明bn
形如an=kan-1+bn(k,b为常数,k≠b时)――构造成等比
如2008年理20设数列{an}的前n项和为Sn。已知a1=a,an+1=Sn+3n,n∈N*。
(Ⅰ)设bn=Sn+3n,求数列{bn}的通项公式;
(Ⅱ)若an+1≥an,n∈N*,求a的取值范围。
形如an=kan-1+bn(k,b为常数,k=b时)――构造成等差
如2009年理19设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2
(I)设bn=an+1-2an,证明数列{bn}是等比数列
(II)求数列{an}的通项公式。
(5)倒数法形如 的递推数列都可以用倒数法求通项。如①已知 ,求an(答: );②已知数列满足a1=1, ,求an(答: )
通过典型题的讲解和运用,让学生在解题的过程中增强学习的目的性,强化了学生对知识的理解和记忆,让学生体会数学的规律性,也减轻的学生的负担,免去了题海战术。
三、讲评试卷,巩固重点知识和常规方法,规范答题
复习阶段总免不了要做一些试卷,但试卷并不是做得越多越好,关键在于做题的质量好坏和收益的多少。怎样才能取得好的讲评效果,要做好以下几点:
⑴突出重点,分类化归,集中讲评
在讲评试卷时,不应该也不必要平均使用力量,有些试题只要点到为止,有些试题则需要仔细剖析,对那些涉及重难点知识且能力要求比较高的试题要特别照顾;对于学生错误率较高的试题,则要对症下药。涉及相同知识点的题,集中讲评;形异质同的题,集中评讲;形似质异的题,集中评讲。为此教师必须认真批阅试卷,对每道题的得分率应细致地进行统计,对每道题的错误原因准确地分析,对每道题的评讲思路精心设计,只有做到评讲前心中有数,才会做到评讲时有的放矢。
⑵贵在方法,重在思维
方法是关键,思维是核心,渗透科学方法,培养思维能力是贯穿数学教学全过程的首要任务。通过试卷的评讲过程,应该使学生的思维能力得到发展,分析与解决问题的悟性得到提高,对问题的化归意识得到加强。训练“多题一解”和“一题多解”,不在于方法的罗列,而在于思路的分析和解法的对比,从而揭示最简或最佳的解法。主要是采用学生“说题”来进行,让学生说出:各题考查的知识点;他们各自的解法或解题思路。教师集中讲评大众化的思想方法、模型化的知识题型。
⑶讲解规范性答题
每次考试下来总会有学生说:某某题我会但做错了。会与对永远是数学考试的一对矛盾,如何解决这对矛盾是数学教师和学生永恒的主题。但不少学生总是不以为然,他(她)们甚至在会与对之间画等号。实际上会做的题会因为算错、看错、抄错等原因而致错,甚至有的情况下会因为结论写得不符合要求而扣分甚至得零分。那么怎样才能避免这些错误呢?那就是老师在平常的教学过程中要讲,在试卷讲评时更要讲,要结合学生的错误情况有针对性地讲,并再一次告诉他们:
①考试要精力集中要精读审明题意、字迹清秀、操作规范、计算正确、不涂改。精力集中、做事一板一眼是一种优秀品质,对成才大有裨益。好的习惯靠平常养成,等出了问题再来纠正就非常困难了,所谓积重难返嘛。
数列考试总结 第6篇
苏教版国标本五年级(上)找规律(第二课时)。
[教材简析]
《找规律》是苏教版小学数学五年级上册第五单元第二课时的内容,教材涉及的具体内容是让学生探索并发现一些简单周期现象中的规律,能正确计算按周期规律排列的某类物体或图形的个数。这部分内容是在学生初步认识周期规律的基础上,根据规律确定某个序号所代表的是什么物体或图形。让学生在生动、具体、现实的情境中感悟新知,灵活运用。教材在编写上有以下几个主要特点:1.密切联系学生的生活实际,创设了小兔跳高的有趣情境等,引导学生根据排列的规律进行计算。来自生活的教学内容,容易激发学生的学习兴趣。2.引导学生经历探索规律的过程。教材注意引导学生经历探索规律的过程,为学生自主探索规律给足了时间和空间。鼓励学生在小组里交流,分享思维成果,不断优化解决问题的策略。这样的安排,能激发学生的潜能,发展创新意识。
[教学目标]
1.使学生结合具体情境,探索并发现一些简单周期现象中的规律,能正确计算按周期规律排列的某类物体或图形共有多少个。
2.能否在解决问题的过程中进行有条理的思考,并能解释得到的结果。
3. 愿意与同伴交流、说说自己解决问题的办法,发现错误并及时改正。
[教学重点]
能根据周期现象的排列规律,熟练计算按周期规律排列的某类物体或图形共有多少个。
[教学难点]
能运用找规律的方法,学会解决生活中的实际问题。
[教学过程]
一、复习,导入新课
同学们,上节课我们已经初步学会了找规律,老师想考考你们,你们有信心吗?(出示)请学生说明思考过程。
1.字母ABABAB……照这样排下去,第26字母是 ( )
2.牛,马,羊,牛,马,羊,牛,马,羊……,则第34个应是 ( )
【设计说明:一题有余数,一题没有。强调 “每几个一组”“一组里面有些什么”“有这样的几组,还余几个”。以旧带新,为今天的学习作铺垫。
揭题:这节课我们继续学习找规律。(板书)
二、出示场景图,教学例2
1.创设情境:同学们你们看动物学校的小猴老师正在给小兔班上跳高课呢。
一共有18只兔子参加跳高,这是题目原有的。(课件)
2.切入主题,提高表述规律的能力。
让学生仔细观察图片,说说你发现了兔子是怎样排列的?(重点发现兔子的排列规律)每3只兔为一组,每组中有1只灰兔、2只白兔,按照1灰2白的顺序排列的(板书)(指名有条理地说清楚)18只兔子分成这样的几组?
3.解决问题。
接着问:小猴老师想知道,(出示问题)照这样排列:18只兔子中有几只灰兔?几只白兔呢?你能想出几种办法帮小猴老师解决这个问题呢?
先让学生独立思考两分钟,再在小组交流想法。
在学生讨论的过程中,教师巡视,以便发现不同的想法 ,预设学生的思考方法。
讨论完请学生回答:你帮小猴老师想了个什么办法?
可能有以下三种:
(1)罗列:3只为一组,每组里有1只灰兔、2只白兔;两组里就有2只灰兔、4只白兔;三组里有3只灰兔、6只白兔……18只兔子一共可以分成6组,那么6组里有6只灰兔、12只白兔。 (展示学生的自备本或电脑演示)
(2)画图:用不同的符号分别代表灰兔和白兔,按规律画足18只,再数一数灰兔、白兔各有几只? (展示学生的方法)
(3)计算:
先想18只兔子排成这样的几组?18÷3=6(组),18只兔子刚好排成“这样的6组”。
每组有1只灰兔,2只白兔,所以灰兔:1×6=6(只);
白兔:2×6=12(只)。
4. 教学“试一试”
先请同学读题,让学生从字面上比较与例题的异同,老师可先让学生尝试做一做,(“试一试”与例题不同,例题算出来刚好是整数组,学生已掌握方法。“试一试”结果不是整数组,有余数。)在试做过程中有的同学出现困难,老师可以请做好的同学讲一讲方法,加上电脑的实物演示,同学们清楚了余下的两只兔是什么颜色,20÷3=3(组)……2(只),这两只是第7组的第1只和第2只,也就是一只黑兔和一只白兔,要分别加进总数里。在做完“试一试”后再与例题深入比较。
老师问:如果我们遇到类似的问题,你会选择哪一种方法?用计算的方法应该怎么思考?
小结:如果用计算的方法,首先要观察排列的规律,发现几只兔为一组,然后求出组数,再根据每组中灰兔、白兔的只数及组数、余数,分别求出灰兔和白兔各有多少只?
设计说明:开头用学生感兴趣的兔子跳高比赛引发学生解决问题的欲望,让学生观察图片,说说兔子的排列规律,提高表述规律的能力。设计先让学生独立思考,以免对同学产生依赖思想,逐步培养独立思考的能力。学生可自由选择方法解答,小组交流想法,体现解法多样化,培养小组合作意识,对于学生的正确方法及时表扬,如:你真会动脑筋等。学生从不同的角度想出了这么多方法来解决问题,应该给予鼓励。如学生说不出来,可给适当的提示。提高教师的评价作用。比较解法,及时优化。
三、综合练习
1.练一练第1-2题
请同学们自己先独立完成,再组织交流。
第一题,评讲是要让学生说说出现余数后的思考过程;可展示几个孩子的作业,找到最简便的方法——可以先求出每组中数量较少的物体个数,另一种物体只要用已知的总数减一减。
第二题要让学生注意画廊上沿瓷砖的排列规律,再根据规律解决问题。
2.练习十第2—4题
第2、4两题:学生独立完成,汇报思路。
第3题:提示学生:通常把7天看作一组,11月份共有30天。每7天为一组,每组中为2天休息、5天工作。
30÷7=4(组)……2(天) 余下的2天为休息日周日和周日。
休息:2×4+2=10(天)
工作:5×4=20(天)
3.拓展练习
6个小朋友围成一圈在做游戏。xxx开始,按顺时针的方向,每人依次说出1个字,共同念儿歌《大老虎》:一二三四五,上山打老虎;老虎不在家,打只小松鼠;松鼠有几只?一二三四五。谁说到最后一个字“五”,就要被淘汰。然后剩下的人再按照这个规则进行,直到剩下最后一个人,这个人就是胜利者。谁将会第一个被淘汰?最后的胜利者会是谁?
设计说明:通过自己独立思考,然后集体交流提高表述规律、表达数学思想的能力,训练了学生数学语言的准确性。练一练第一题可展示几个孩子的作业,找到最简便的方法——可以先求出每组中数量较少的物体个数,另一种物体只要用已知的总数减一减。第三题考察学生对找规律知识的灵活运用程度,能解决生活中的实际问题让学生体会今天学到的知识是有用的。思考题拓展学生的视野,留给学有余力的孩子,另也作为本课的机动内容。
四、全课总结,体验收获
通过今天这节课的学习,你知道了什么,学会了什么?来交流交流吧!
数列考试总结 第7篇
1、遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2、忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
3、四种命题的结构不明致误
错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
4、充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
5、逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:
p∨q真<=>p真或q真,
p∨q假<=>p假且q假(概括为一真即真);
p∧q真<=>p真且q真,
p∧q假<=>p假或q假(概括为一假即假);
┐p真<=>p假,┐p假<=>p真(概括为一真一假)。
6、求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
数列考试总结 第8篇
高中有机化学知识点总结
1.有机化合物的组成与结构:
⑴能根据有机化合物的元素含量、相对分子质量确定有机化合物的分子式。
⑵了解常见有机化合物的结构。了解有机物分子中的官能团,能正确地表示它们的结构。
⑶了解确定有机化合物结构的化学方法和某些物理方法。
⑷了解有机化合物存在异构现象、能判断简单有机化合物的同分异构体(不包括手性异构体)
⑸能根据有机化合物命名规则命名简单的有机化合物。
⑹能列举事实说明有机分子中基团之间存在相互影响。
2.烃及其衍生物的性质与应用
⑴以烷、烯、炔和芳香烃的代表物为例,比较它们在组成、结构、性质上的差异。
⑵了解天然气、石油液化气和汽油的主要成分及其应用。
⑶举例说明烃类物质在有机合成和有机化工中的重要作用。
⑷了解卤代烃、醇、酚、醛、羧酸、酯的典型代表物的级成和结构特点以及它们的相互联系。
⑸了解加成反应、取代反应和消去反应。
⑹结合实际了解某些有机化合物对健康可能产生影响,关注有机化合物的安全使用问题。
3.糖类、氨基酸和蛋白质
⑴了解糖类的组成和性质特点,能举例说明糖类在食品加工和生物质能源开发上的应用。
⑵了解氨基酸的组成、结构特点和主要化学性质,氨基酸与人体健康的关系。
⑶了解蛋白质的组成、结构和性质。
⑷了解化学科学在生命科学发展中所起的重要作用。
4.合成高分子化合物
⑴了解合成高分子的组成与结构特点,能依据简单合成高分子的结构分析其链节和单体。
⑵了解加聚反应和缩聚反应的特点。
⑶了解新型高分子材料的性能及其在高新技术领域中的应用。
⑷了解合成高分子化合物在发展经济、提高生活质量方面的贡献。
依据反应条件:
⑴能与NaOH反应的有:①卤代烃水解;②酯水解;③卤代烃醇溶液消去;④酸;⑤酚;⑥乙酸钠与NaOH制甲烷
⑵浓H2SO4条件:①醇消去;②醇成醚;③苯硝化;④酯化反应
⑶稀H2SO4条件:①酯水解;②糖类水解;③蛋白质水解
⑷Ni,加热:适用于所有加氢的加成反应
⑸Fe:苯环的卤代
⑹光照:烷烃光卤代
⑺醇、卤代烃消去的结构条件:β-C上有氢
⑻醇氧化的结构条件:α-C上有氢
依据反应现象
⑴水或溴的CCl4溶液褪色:C═C或C≡C;
⑵FeCl3溶液显紫色:酚;
⑶石蕊试液显红色:羧酸;
⑷Na反应产生H2:含羟基化合物(醇、酚或羧酸);
⑸Na2CO3或NaHCO3溶液反应产生CO2:羧酸;
⑹Na2CO3溶液反应但无CO2气体放出:酚;
⑺NaOH溶液反应:酚、羧酸、酯或卤代烃;
⑻生银镜反应或与新制的Cu(OH)2悬浊液共热产生红色沉淀:醛;
⑼常温下能溶解Cu(OH)2:羧酸;
⑽能氧化成羧酸的醇:含“─CH2OH”的结构(能氧化的醇,羟基相“连”的碳原子上含有氢原子;能发生消去反应的醇,羟基相“邻”的碳原子上含有氢原子);
⑾水解:酯、卤代烃、二糖和多糖、酰胺和蛋白质;
⑿既能氧化成羧酸又能还原成醇:醛;
数列考试总结 第9篇
一、高考数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是xxx的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:
当d≠0时,Sn是xxx的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是xxx的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是xxx的正比例式);
当q≠1时,
二、高考数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
三个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c≠1) 是等差数列。
数列考试总结 第10篇
高中数列知识点总结
高中数列知识点总结
1、高二数学数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…。
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的'数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。
2、高二数学数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列。
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列。
3、高二数学数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一。如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循。
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式。
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项。
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式。
如2的不足近似值,精确到1,0。1,0。01,0。001,0。000 1,…所构成的数列1,1。4,1。41,1。414,1。414 2,…就没有通项公式。
(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一。
4、高二数学数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1 2 3 4 5 6 7
项: 4 5 6 7 8 9 10
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射。因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值。这里的函数是一种特殊的函数,它的自变量只能取正整数。
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式。
数列是一种特殊的函数,数列是可以用图象直观地表示的。
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确。
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点。
5、高二数学递推数列
数列考试总结 第11篇
数学高考必考知识点总结
数学高考必考知识点总结1
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的
否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
数列考试总结 第12篇
在各级各类的招聘考试中,经常出现一些有关数列的填空题或选择题.给出数列的一些项,让应聘者通过观察这些项的规律,填上指定的某一项;或者给出几个选项,让应聘者从中选出正确的答案.笔者认为,这类问题虽然可以考察应聘者归纳总结、合情推理等方面的能力,但是,至少存在下面两个问题值得我们探讨:
1 有些数列的规律比较特殊,有偏难偏怪之嫌,应聘者很难在短时间内找到它的规律
例如,有这样一道题:观察下面这个数列的前五项,写出它的第六项:61,52,63,94,46.假如你是应聘者,请你不妨试一试,看看需用多长时间能够得出答案.命题者给出的答案是18.为什么答案是18呢?理由是这样的:把这个数列的每一项的个位数字与十位数字对调,前五项成为:16,25,36,49,64,分别是 42,52 ,62,72 ,82 ,按照这个规律,后面一项应该是 92,即81,对调81的个位数字与十位数字,就得到18.这类数学问题,作为茶余饭后的游戏玩玩尚可,如果作为一种正是招聘的试题,那么就显得不太合适了.虽然这类问题也能考查应聘者的归纳和推理能力,但是,从选拔人才的角度来讲,却不是首选的问题。
笔者查看了近几年各级公务员招聘的部分试题以及一些模拟试题;也与一些应聘者进行过交谈.笔者了解到:试题中所给出的数列的规律比较特殊,往往使一些应聘者望而却步,从而放弃对这类问题的进一步思考,他们宁愿把有限的考试时间和精力放在解决其它问题上.这样一来,也就谈不上考查归纳总结、合情推理等方面的能力,当然也就失去了这类试题的意义。
2 答案的不唯一性,使这类问题的科学性遭到质疑
对于以选择题形式给出的问题来说,我们有充足的理由可以说明,几个备选答案都是正确的;而对于以填空题形式给出的问题来说,我们甚至可以说,填上任何的正整数都是正确的.从这个角度来说,这类试题缺乏科学性,甚至可以说是错误的. 也许你对这种说法持怀疑态度,但是,看完下面的讨论之后,你就会打消疑虑.
实际上,对于任意的有穷数列,如果只给出有限项,而要求填写指定的某一项,那么我们都可以构造出类似于公式(1)的数列的通项公式,从而找到符合_规律_的若干个数.
因此我们说,类似于前文所述的招聘考题是不科学的!
下面我们给出2011年与2012年河北省公务员录用考试中的相关题目,有兴趣的读者可以仿照上面的方法,自己试一试.
2011年河北省公务员录用考试《行政职业能力测验试卷》第二部分_数量关系_第一题数字推理:给你一个数列,但其中缺少一项,要求你从四个选项中选出你认为最符合数列排列规律的一项,来填补空缺。
(1) -1,0,1,1,4,( )
(2)6,7,3,0,3,3,6,9,5,( )
(3)257,178,259,173,261,168,263,( )
(4)2,3,4,9,32,( )
(5)1,1,2,6,24,( )
2012年河北省公务员录用考试《行政职业能力测验试卷》第二部分_数量关系_第一题数字推理:给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补空缺,使之符合原数列的排列规律。
(1) 0,0,6,24,60,( )
(2)2,3,7,45,2017,( )
(3)2,2,3,4,9,32,( )
(4)0,4,16,48,128,( )
(5),1,2,5,17,107,( )
数列考试总结 第13篇
摘要: 对诊断一致性的简单Kappa系数、加权Kappa系数以及总Kappa系数进行了分析和说明,由于Kappa系数仅适用于行数和列数相等的方表,针对Kappa检验的这一局限性,给出了行数和列数不一致时使用SPSS软件实现Kappa检验的方法。
关键词: 诊断试验; 一致性检验; Kappa系数
本研究分别给出三种Kappa系数,即简单Kappa系数,加权Kappa系数和总Kappa系数及标准误和检验统计量的计算公式,并针对Kappa系数仅适用于行数和列数相等的方表的问题,给出了用SPSS软件实现对行列数不等资料的Kappa检验方法。
1 简单Kappa系数的计算公式[1]
K=P0-Pe[]1-Pe(1)
其中P0=∑ipii,称为观测一致率,Pe=∑・i,称为期望一致率,即两次检验结果由于偶然机会所造成的一致率,其中pi.=Ri[]N, p・i=Ci[]N, Ri,Ci分别为第i个格点所对的行合计和列合计,N为总例数。当两个诊断完全一致时,P0=1,此时Kappa值为1。当观测一致率大于期望一致率时,Kappa值为正数,且Kappa值越大,说明一致性越好。当观察一致率小于期望一致率时,Kappa值为负数,这种情况一般来说比较少见。根据边缘概率的计算,Kappa值的范围值应在-1~1之间。Kappa≥075两者一致性较好;;Kappa≥两者一致性一般;Kappa
Kappa系数标准误的计算公式为:
S=Pe+P2e-∑・i(pi.+p・i)[](1-Pe)N(2)
其95%的置信区间为:
(, k+)(3)
由于Kappa值是一个样本统计量,作是否有统计学意义的假设检验时,应选用统计量:
U=Kappa[]S(4)
2 加权的Kappa系数[2]
加权的Kappa系数是简单Kappa系数的推广,是用加权的方法对两个评价结果进行量化。对于四格表来说,简单Kappa系数与加权的Kappa系数是相等的,对于一般的行列表,加权的Kappa系数的计算公式为:
Kw=P0(w)-Pe(w)[]1-Pe(w)(5)
P0(w)=∑i ∑jwijpij
Pe(w)=∑i ∑・j
其中0≤wij=wji
加权Kappa系数的标准误计算公式为:
Skw=∑i ∑・j[wij-(i.+・j)]2-P2e(w)[](1-Pe(w))2 N(6)
95%的置信区间为:
(, kw+)(7)
假设检验的统计量为U=kW[]Skw(8)
Kappa的权系数一般使用CicchettiAllison和FleissCohen两种权值类型[2],CicchettiAllison的计算公式为:
wij=1-|Ci-Cj|[]Ck-Ci(9)
FleissCohen的计算公式为:
wij=1-(Ci-Cj)2[](Ck-Ci)2(10)
其中,Ci表示第i列的评价分值,k表示列数。如果是数值型变量,评价分值Cij就是第i行第j列对应的具体数值;如果是分类变量,可按照相应级别进行赋值。由于wij=1,而当i≠j时,0≤wij
3 总Kappa系数
假设列联表为多向列联表(我们不妨设有q个方向),且每个变量有两个水平,即为2×2×…×2列联表,令ki表示第i个变量的Kappa系数,Ski表示第i个Kappa系数的标准误,则总Kappa系数的计算公式为:
K总=∑q[]i=1 ki[]Ski / ∑q[]i=1 1[]Ski(11)
若要检验各变量Kappa系数是否都相等,可采用自由度为q-1的χ2检验,计算公式为:
χ2=∑q[]i=1 (ki-k总)2[]Ski(12)
(11)、(12)两个公式均适用于加权的Kappa系数。
4 行列数不等时Kappa系数的计算
Kappa系数的计算适用于两个评价人分级水平数相同的情况,即数据格式为行数和列数相等的方表。而在实际操作中,经常会出现分级水平数不一致,即行列数不等的情况。我们来看一个实例:两名医生按照某项指标的1~4个等级来评价8个病人。一个医生用全部4个等级进行评价,而另一医生只有3个等级进行评价。此时,对于两个医生来说,他们评价的级别范围不同。数据见表1。
表1 甲乙两医生对病人的评价(略)
数列考试总结 第14篇
高二数学的数列知识点总结
高考题中的数列试题,往往比较难,同学们有点怕,究其原因,还是数列试题综合性强,变形灵活,为大家分享了高二数学数列知识点的总结,一起来看看吧!
数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列
1.等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+xxx··+an
=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n-1)d]①
Sn=an+an-1+an-2+xxxxxx+a1
=an+(an-d)+(an-2d)+xxxxxx+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*
三、若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
四、对任意的.k∈N*,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
等比数列
1.等比中项
如果在a与b中间插入一个数G,使a,G,xxx等比数列,那么G叫做a与b的等比中项。
有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G=ab是a,G,b三数成等比数列的必要不充分条件。
2.等比数列通项公式
an=a1*q’(n-1)(其中首项是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q’n)/(1-q)=(a1-a1*q’n)/(1-q)(q≠1)
当q=1时,等比数列的前n项和的公式为
Sn=na1
3.等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比数列性质
(1)若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和xxx等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:q、r、xxx等比数列,则aq·ap=ar,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)
(6)任意两项am,an的关系为an=am·q’(n-m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
数列考试总结 第15篇
高中数学数列知识点
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
等差中项
由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+xxx··+an
=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n-1)d]①
Sn=an+an-1+an-2+xxxxxx+a1
=an+(an-d)+(an-2d)+xxxxxx+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
怎么样提高数学成绩
首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。
提升数学成绩还要拥有一个错题本,和数学资料。认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。
学会听课,在课堂上勇于提问。数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。把握好数学课本,为自己打下一个好基础,这样才能更有效的提升你的数学成绩。学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。
学好数学的方法技巧整理
预习的方法
上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。
听懂课的习惯
注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
不断练习
不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。
数列考试总结 第16篇
数列的知识点总结
数列的知识点总结
数列知识:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
①用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
数列的一般形式可以写成
a1,a2,a3,…,an,a(n+1),……
简记为{an},
项数有限的数列为“有穷数列”(finite sequence),
项数无限的数列为“无穷数列”(infinite sequence)。
数列的各项都是正数的为正项数列;
从第2项起,每一项都大于它的前一项的数列xxx增数列;如:1,2,3,4,5,6,7;
从第2项起,每一项都小于它的前一项的数列xxx减数列;如:8,7,6,5,4,3,2,1;
从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;
各项呈周期性变化的数列叫做周期数列(如三角函数);
各项相等的数列叫做常数列(如:2,2,2,2,2,2,2,2,2)。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列中项的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。
如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).
并非所有的数列都能写出它的通项公式。例如:π的不同近似值,根据精确的程度,可形成一个数列3,,,,…它没有通项公式。
数列中的项必须是数,它可以是实数,也可以是复数。
用符号{an}表示数列,只不过是“借用”集合的符号,它们之间有本质上的区别:1.集合中的元素是互异的,而数列中的项可以是相同的。2.集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。
知识拓展:函数不一定有解析式,同样数列也并非都有通项公式。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的'数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
数列考试总结 第17篇
一.方差的概念与计算公式
例1 两人的5次测验成绩如下:
X: 50,100,100,60,50 E(X )=72;
Y: 73, 70, 75,72,70 E(Y )=72.
平均成绩相同,但X 不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是
消除符号影响
方差即偏离平方的均值,记为D(X ):
直接计算公式分离散型和连续型,具体为:
这里 是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的`平方”。
其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动
二.方差的性质
1.设C为常数,则D(C) = 0(常数无波动);
2. D(CX )=C2 D(X ) (常数平方提取);
特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3.若X 、Y 相互独立,则
记则前面两项恰为 D(X )和D(Y ),第三项展开后为
当X、Y 相互独立时,故第三项为零。
特别地独立前提的逐项求和,可推广到有限项。
方差公式:
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
三.常用分布的方差
1.两点分布
2.二项分布
X ~ B ( n, p )
引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布)
3.泊松分布(推导略)
4.均匀分布
另一计算过程为
5.指数分布(推导略)
6.正态分布(推导略)
分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2);
分布:其中X~F(m,n),E(X)=n/(n-2);
正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
例2 求上节例2的方差。
解 根据上节例2给出的分布律,计算得到
工人乙废品数少,波动也小,稳定性好。
方差的定义:
数列考试总结 第18篇
选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分(一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
高中数学立体几何易错知识点总结
1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
3.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
4.求两条异面直线xxx的角、直线与平面xxx的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
5.异面直线xxx角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线xxx角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
6.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
7.两条异面直线xxx的角的范围:0°《α≤90°
直线与平面xxx的角的范围:0o≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
8.你知道异面直线上两点间的距离公式如何运用吗?
9.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
10.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
11.棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
12.球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。
数列考试总结 第19篇
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的`个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公
式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)公差;
数列和公式:sn,=(a1+an)n2;
数列和=(首项+末项)项数2;
项数公式:n=(an+a1)d+1;
项数=(末项-首项)公差+1;
公差公式:d=(an-a1))(n-1);
公差=(末项-首项)(项数-1);
关键问题:确定已知量和未知量,确定使用的公式。
数列考试总结 第20篇
1.重基础,体现数学课程的基础性
试题紧密联系考生的学习实际,直接考查基础知识和基本技能及运用数学思想方法解决问题的能力,注重对数学核心内容的考查,加强了知识的有效整合,提高了试卷的概括性和综合性.
例1 (2014年高考陕西卷―11)已知[4a=2,][lgx=a,]则[x]= .
解析 [4a=22a=2,lgx=a,a=12,] [lgx=a=12,][所以x=1012=10.]
例2 (2014年高考广东卷―4)若实数[k]满足[0
A.离心率相等
B. 虚半轴长相等
C. 实半轴长相等
D. 焦距相等
解析 [00.]
从而两曲线均为双曲线,
又25+(9-[k])=34-[k]=(25-[k])+9,
故两双曲线的焦距相等.
答案 D
例3 (2014年高考四川卷―4)若设[a>b>0,][c
A. [ac>bd] B. [ac
C. [ad>bc] D. [ad
解析 [c0],[-1d>-1c>0.]
又[a>b>0],[-ad>-bc>0],[ad
答案 D
点拨 例1考查了指、对数函数的运算,例2考查了双曲线的方程;例3主要考查不等式的基本性质. 以上各题所考查的内容,图形简洁,结论清晰,充分体现试题的基础性,题目既相互独立,又相互联系,和谐统一. 这种直接考查基础知识与基本技能的考法有效提高了考查结果的效度和信度.
2.加强应用,重视实践,注重能力
新课程标准要求考生面对实际问题时,能够主动尝试从数学的角度运用所学的知识和方法寻求解决问题的策略和方法. 近几年试题不断创新,突出问题解决,关注考生的发展,因此试卷将会涌现出一大批创新试题,背景将会更加贴近现实生活,更加符合考生的实际,更具有教育价值和操作性,实现对数学思想方法不同程度的考查.可能会出现一些思辨性、实验性较强和考查考生直觉思维能力、获取信息、分析信息等方面的问题,可能会在问题情境设计方式等方面有较大的突破,出现立意深刻、背景新颖并洋溢着时代气息的创新题、知识交汇题.
例4 (2014年高考新课标Ⅰ卷―18)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方:
(1)求这500件产品质量指标值的样本平均数[x]和样本方差[s2](同一组数据用该区间的中点值作代表);
(2)由频率分布直方图可以认为,这种产品的质量指标值[Z]服从正态分布[N(μ,δ2)],其中[μ]近似为样本平均数[x],[δ2]近似为样本方差[s2].
①利用该正态分布,求[P(
②某用户从该企业购买了100件这种产品,记[X]表示这100件产品中质量指标值为于区间(,)的产品件数,利用①的结果,求[EX].
附:[150]≈.若[Z]~[N(μ,δ2)],则[P(μ-δ
解析 (1)抽取产品质量指标值的样本平均数[x]和样本方差[s2]分别为
[x=170××××]
[+210×××.]
[s2=-302×××]
[× +102×××][=150.]
(2)①由(1)知,[Z]~[N(200,150)],
从而[P(
[=P(
②由①知,一件产品中质量指标值为于区间(,)的概率为.
依题意知[X?B(100,)],
所以[EX=100×].
点拨 本题主要考查了样本平均数、样本方差、正态分布、二项分布、数学期望等概念及相关计算,考查运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力、应用意识和创新意识.
3.活用探究性,关注活动过程,倡导研究性学习
试题通过设置观察、操作、探究、应用等方面的问题,给考生提供了一定的思考研究空间,较好地考查了考生在数学思考能力和数学活动过程等方面的数学素养,力求通过不同层次、不同角度和不同视点的设问,实现对数学思想方法不同程度的考查. 考查考生能否独立思考、能否从数学的角度去发现和提出问题,并加以探索研究和解决,体现了课程标准所倡导的学习方式.
例5 (2014年高考江苏卷―20)设数列{[an]}的前[n]项和为[Sn]. 若对任意的正整数[n],总存在正整数[m],使得[Sn=am],则称{[an]}是“[H]数列.”
(1)若数列{[an]}的前n项和[Sn=2n]([n∈N?]),证明:{[an]}是“[H]数列”;
(2)设数列{[an]}是等差数列,其首项[a1]=1. 公差[d
(3)证明:对任意的等差数列{[an]},总存在两个“[H]数列” {[bn]}和{[cn]},使得[an=bn+cn]([n∈N?])成立.
解析 (1)证明:[Sn=2n],
[an=Sn-Sn-1=2n-1(n≥2)],
又[a1=S1=2=21],[an=2, n=1,2n-1,n≥2.]
存在[m=n+1]使得[Sn=am.]
(2)由已知,得[S2=2a1+d=2+d],因为{[an]}是“[H]数列”,所以存在正整数[m],使得[S2=am],即[2+d=1+(m-1)d],于是[(m-2)d=1],因为[d
当[d=-1]时,[an=2-n], [Sn=n(3-n)2]是小于2的整数,[n∈N?],于是对任意的正整数[n],总存在正整数[m=2-Sn=2-n(3-n)2],使得[Sn=2-m=am],所以{[an]}是“[H]数列”. 因此[d]的值为-1.
(3)证明:设等差数列{[an]}的公差为[d],则[an=a1+(n-1)d=na1+(n-1)(d-a1)]([n∈N?])
令[bn=na1],[cn=(n-1)(d-a1)],则[an=bn+cn][(n∈N?)]
下面证明{[bn]}是“[H]数列”.
设{[bn]} 的前[n]项和为[Tn] ,则[Tn=n(n+1)2][(n∈N?)],于是对任意的正整数[n],总存在正整数[m=n(n+1)2],使得[Tn=bm],所以{[bn]}是“[H]数列”.
同理可证{[cn]}也是“[H]数列”.
所以,对任意的等差数列{[an]},总存在两个“[H]数列” {[bn]}和{[cn]},使得[an=bn+cn]([n∈N?])成立.
点拨 本题通过新概念,得到另一个新知识内容的阅读学习进而应用,可以说是另一种考查学习过程的构题方式.这类问题的核心是考查考生的概念理解能力、“新知识”和已学知识联系与转化的能力,以及现场学习、迁移和应用的能力.它既要求考生善于对新情景、新信息进行有效的加工和整合,形成对概念的认识,又要求考生能对所学知识进行必要的迁移、拓展、变形应用.所以,这类试题多有较好的区分度和可推广性.本题带有浓郁的探究成分,是数与形的有机结合,打破了以往程式化的设问方式,由于情况的不确定性,需要对不同情况进行分类讨论. 完成本题需要有较强的学习、迁移、分析、变形应用、综合、推理和探究能力.
4.注重综合运用,合理体现数学思想与选拔功能
为体现数学学业考试向高一级学校选拔和提供新生的目的,试题在命制过程中,充分注意到了设置合理的区分度,精心编制压轴题,综合考查考生的各种数学能力,以便正确区分不同考生的数学学习水平.
例6 (2014年高考新课标Ⅱ卷―21)已知函数[fx]=[ex-e-x-2x]
(1)讨论[fx]的单调性;
(2)设[gx=f2x-4bfx],当[x>0]时,[gx>0],求[b]的最大值;
(3)已知[
解析 [f(x)=ex-e-x-2x,x∈R,]
[f(x)=ex+e-x-2][=ex+1ex-2≥2ex?1ex-2=0.]
[所以f(x)在R上单增.]
(2)[g(x)=f(2x)-4bf(x)]
[=e2x-e-2x-4x-4b(ex-e-x-2x)>0,x>0.]
[g(x)=2(ex+e-x-2)(ex+e-x-2b+2)]
①当[b≤2]时,[g(x)]≥0,当且仅当[x=0]时等号成立,
所以[g(x)]在[(-∞,+∞)]上单调递增,而[g(0)=0],
所以对任意[x>0],[gx>0].
②当[b>2]时,若[x]满足2
即[0
因此当[0
综上,[b]的最大值为2.
(3)由(2)知,[g(ln2)=32-22b+2(2b-1)ln2.]
当[b=2]时,[g(ln2)=32-42+6ln2>0.]
所以[ln2>82-312>.]
当[b=324+1]时,[ln(b-1+b2-2b)=ln2,]
[g(ln2)=-32-22+(32+2)ln2
所以[ln2
数列考试总结 第21篇
高中圆知识点总结
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合;
圆的外部:可以看作是到定点的距离大于定长的点的集合;
圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;
2、到线段两端点距离相等的点的轨迹是:线段的中垂线;
3、到角两边距离相等的点的轨迹是:角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
圆周角定理推论:
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。
②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。
③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。)
④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。
⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。
圆周运动
1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
2、描述匀速圆周运动快慢的'物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
**匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。
(2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)xxx,频率f=1/T
(4)线速度、角速度及周期之间的关系: 3、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
4、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
5,注意的结论:
(1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。
数列考试总结 第22篇
选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分(一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
数列考试总结 第23篇
高考数列知识点总结
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的`数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
数列考试总结 第24篇
必修二数学数列知识点总结
一、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)
2. 排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!
Cnm = n!/(n-m)!m!
Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题) 间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1
③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
二、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则 am+an=ap+aq
3、等比数列{an}中,若m+n=p+q,则am·an=ap·aq
4、等比数列{an}的任意连续m项的.和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
三、数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an= S1(n-1)或Sn-Sn-1(n>2或n=2)
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是xxx的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=na1+[n(n-1)/2]d
Sn=n(a1+a2)/2
Sn=nan-[n(n-1)/2]d
当d≠0时,Sn是xxx的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是xxx的正比例式。
4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是xxx的正比例式);
怎么学好数学
1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。
2、要有端正的学习态度。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。
3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!
数学两个平面的位置关系知识点
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行——没有公共点;两个平面相交——有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线xxx的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直
两平面垂直的定义:两平面相交,如果xxx的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
数列考试总结 第25篇
等比数列求和公式
(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);
(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (xxx公比,n为项数)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每 k项之和xxx等比数列.
③若m、n、q∈N,且m+n=2q,则am×an=aq^2
(5)“G是a、b的等比中项”“G^2=ab(G ≠ 0)”.
(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式xxx表示等比数列的第n项。
等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。
数列考试总结 第26篇
数列的相关概念
1.数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N--或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
数列考试总结 第27篇
高中数学知识点之方差定义
方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
高中数学知识点之方差性质
1.设C为常数,则D(C)=0(常数无波动);
(CX)=C2D(X)(常数平方提取);
3.若X、Y相互独立,则前面两项恰为D(X)和D(Y),第三项展开后为
当X、Y相互独立时,,故第三项为零。
独立前提的逐项求和,可推广到有限项。
方差公式:
平均数:M=(x1+x2+x3+…+xn)/n
(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
高中数学知识点之方差的应用
计算下列一组数据的极差、方差及标准差(精确到).
50,55,96,98,65,100,70,90,85,100.
答:极差为
100-50=50.
平均数为
数列考试总结 第28篇
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的'通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……
(1)求{an}通项公式 (2)略
解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-
又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。
证明:本题即证an+1-(n+1)=q(an-n) (xxx非0常数)
由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1