数学靠总结 第1篇
1、函数零点的概念:
对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:
函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
二次函数。
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
数学靠总结 第2篇
高考数学知识点:轨迹方程的求解
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种xxx曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
.直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高考数学知识点:排列组合公式
排列组合公式/排列组合计算公式
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法._排列_
把5本书分给3个人,有几种分法_组合_
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序xxx一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!.n2!.....nk!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=
从N倒数r个,表达式应该为n.(n-1).(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有个三位数。计算公式=P(3,9)=,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=
排列、组合的概念和公式典型例题分析
例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.
点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.
例2xxx一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:
∴符合题意的不同排法共有9种.
点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.
例3判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?
分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.
(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).
(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.
(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.
(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.
例4证明.
证明左式
右式.
∴等式成立.
点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.
例5化简.
解法一原式
解法二原式
点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.
例6解方程:(1);(2).
解(1)原方程
解得.
(2)原方程可变为
∵,,
∴原方程可化为.
即,解得
高三数学三角函数公式
锐角三角函数公式
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA?CosA
数学靠总结 第3篇
1、正数和负数的有关概念
(1)正数:比0大的数叫做正数;
负数:比0小的数叫做负数;
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类
3、有关数轴
(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
4、任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.
(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.
(3)一个数同零相加,仍得这个数.
加法的交换律:a+b=b+a
加法的结合律:(a+b)+c=a+(b+c)
7、有理数减法:减去一个数,等于加上这个数的相反数。
8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”
9、有理数的乘法
两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号 第二步:绝对值相乘
10、乘积的符号的确定
几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;
当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。
11、倒数:乘积为1的两个数互为倒数,0没有倒数。
正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)
倒数是本身的只有1和-1。
数学靠总结 第4篇
平xxx与立xxx知识点
平xxx:
概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平xxx(或二次xxx)。就是说,如果x=a,那么x就叫做a的平xxx。如:23与-23都是529的平xxx。
因为(±23)=529,所以±23是529的平xxx。问:(1)16,49,100,1100都是正数,它们有几个平xxx?平xxx之间有什么关系?(2)0的平xxx是什么?
概括2:一个正数有两个平xxx,它们互为相反数;0有一个平xxx,它是0本身;负数没有平xxx。
概括3:求一个数a(a≥0)的平xxx的运算,叫做开平方。
开平方运算是xxx指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平xxx却有两个,这两个数互为相反数,0的平xxx是0。负数没有平xxx。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平xxx,也可以通过平方运算来检验一个数是不是另一个数的平xxx。
一、算术平xxx的概念
正数a有两个平xxx(表示为?根,表示为a。0的平xxx也叫做0的算术平xxx,因此0的算术平xxx是0,即0。”是算术平xxx的符号,a就表示a的算术平xxx。a的意义有两点:a,我们把其中正的平xxx,叫做a的算术平方
(1)被开方数a表示非负数,即a≥0;
(2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平xxx是非负数。负数不存在算术平xxx,即a<0时,xxx义。
如:=3,8是64的算术平xxx,6无意义。9既表示对9进行开平方运算,也表示9的正的平xxx。
二、平xxx与算术平xxx的区别在于
①定义不同;
②个数不同:一个正数有两个平xxx,而一个正数的算术平xxx只有一个;③表示方法不同:正数a的平xxx表示为?a,正数a的算术平xxx表示为a;④取值范围不同:正数的算术平xxx一定是正数,正数的平xxx是一正一负.⑤0的平xxx与算术平xxx都是0.
三、例题讲解:
例1、求下列各数的算术平xxx:
(1)100;
(2)49;
(3)
注意:由于正数的算术平xxx是正数,零的算术平xxx是零,可将它们概括成:非负数的算
术平xxx是非负数,即当a≥0时,a≥0(当a<0时,xxx义)
用几何图形可以直观地表示算术平xxx的意义如有一个面积为a(a应是非负数)、边长为
的正方形就表示a的算术平xxx。
这里需要说明的是,算术平xxx的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平xxx。
3、立xxx
(1)立xxx的定义:如果一个数x的立方等于a,这个数叫做a的立xxx(也叫做三次xxx),即如果x?a,那么x叫做a的立xxx
(2)一个数a的立xxx,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。
(3)一个正数有一个正的立xxx;0有一个立xxx,是它本身;一个负数有一个负的立xxx;任何数都有的立xxx。
(4)利用开立方和立方互为逆运算关系,求一个数的立xxx,就可以利用这种互逆关系,检验其正确性,求负数的立xxx,可以先求出这个负数的绝对值的立xxx,再取其相反数。
数学靠总结 第5篇
一、导数的应用
1、用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。
学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2、生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益最大问题
3)面积、体积最(大)问题
二、推理与证明
1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象xxx的相似特征得出所需要的相似特征。
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些xxx特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
四、坐标平面上的直线
1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
五、圆锥曲线
1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。
3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把xxx条件转化为等价的代数表示,通过代数方法解决几何问题。
数学靠总结 第6篇
1、图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2、相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
数学靠总结 第7篇
集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。
例如:
1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。
什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。
(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作AB。中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)
数学靠总结 第8篇
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.
3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4
.集合的表示方法:列举法与描述法。
常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R
5.关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表
示某些对象是否属于这个集合的方法。6、集合的分类:
(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合
(3).空集不含任何元素的集合例:{x|x2=-5}=Φ
二、集合间的基本关系
1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?
2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。即A?A
②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)
③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用xxx表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念
合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次xxx的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.
2.构成函数的三要素:定义域、对应关系和值域
再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)
3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
5.常用的函数表示法:解析法:图象法:列表法:
6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.7.函数单调性(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1 注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法 (A)定义法:○1任取x1,x2∈D,且x1 8.函数的奇偶性 (1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○ 则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果xxx函数解析式的构造时,可用待定系数法;xxx复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当xxx表达式较简单时,也可用凑配法;若xxx抽象函数表达式,则常用解方程组消参的方法求出f(x)。 补充不等式的解法与二次函数(方程)的性质 高考数学必考知识点归纳必修一: 1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二: 1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。 这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分 2、直线方程:高考时不单独命题,易和圆锥曲线结合命题 3、圆方程 高考数学必考知识点归纳必修三: 1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。 高考数学必考知识点归纳必修四: 1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。 2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,xxx到13分。 高考数学必考知识点归纳必修五: 1、解三角形:xxx、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。 高考数学必考知识点归纳文科选修: 选修1--1:重点:高考占30分 1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考) 选修1--2: 1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。 高考数学必考知识点归纳理科选修: 选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数 选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计: 高考的知识板块 集合与简单逻辑:5分或不考 函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点) 平面向量与解三角形 立体几何:22分左右 不等式:(线性规则)5分必考 数列:17分(一道大题+一道选择或填空)易和函数结合命题 平面解析几何:(30分左右) 计算原理:10分左右 概率统计:12分----17分 复数:5分 1.数列的定义 按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合. 2.数列的分类 (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列. (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的`, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4。 一、勾股定理 1、勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。 2、勾股定理的逆定理 如果三角形的三边长a,b,xxx这种关系,那么这个三角形是直角三角形。 3、勾股数 满足的三个正整数,称为勾股数。 常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。 二、证明 1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。 2、三角形内角和定理:三角形三个内角的和等于180度。 (1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。 (2)三角形的外角与它相邻的内角是互为补角。 3、三角形的外角与它不相邻的内角关系 (1)三角形的一个外角等于和它不相邻的两个内角的和。 (2)三角形的一个外角大于任何一个和它不相邻的内角。 4、证明一个命题是真命题的基本步骤 (1)根据题意,画出图形。 (2)根据条件、结论,结合图形,写出xxx、求证。 (3)经过分析,找出由xxx推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。 八年级上册数学知识点 (一)运用公式法 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项 ②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) =(m+n)×(a+b). 初二下册数学知识点归纳北师大版 一、多边形 1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。 2、多边形的边:组成多边形的各条线段叫做多边形的边。 3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。 4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。 5、多边形的周长:多边形各边的长度和叫做多边形的周长。 6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。 说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。 7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。 8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。 注意:多边形的外角也就是与它有公共顶点的内角的邻补角。 9、多边形内角和定理:n边形内角和等于(n-2)180°。 10、多边形内角和定理的推论:n边形的外角和等于360°。 说明:多边形的外角和是一个常数(与边数无关),利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算方法。 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线xxx的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线; (2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面xxx的角:平面的一条斜线和它在这个平面内的射影xxx的锐角。 知识点一椭圆的定义 平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。 当即时,集合P为椭圆。 当即时,集合P为线段。 当即时,集合P为空集。 知识点二椭圆的标准方程 (1),焦点在轴上时,焦点为,焦点。 (2),焦点在轴上时,焦点为,焦点。 知识点三椭圆方程的一般式 这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考: (其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。方程可变形为。 当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。 一般式,通常也设为,应特别注意均大于0,标准方程为。 知识点四椭圆标准方程的求法 1.定义法 椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围。 例1、在△ABC中,A、B、C所对三边分别为,且B(-1,0)C(1,0),求满足,xxx等差数列时,顶点A的曲线方程。 变式练习1.在△ABC中,点B(-6,0)、C(0,8),xxx等差数列。 (1)求证:顶点A在一个椭圆上运动。 (2)指出这个椭圆的焦点坐标以及焦距。 2.待定系数法 首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满足的等式,求得的值,再代入所设方程,即一定性,二定量,最后写方程。 例2、xxx椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。 例3、xxx椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。 变式练习2.求适合下列条件的椭圆的方程; (1)两个焦点分别是(-3,0),(3,0)且经过点(5,0). (2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12. 3.xxx椭圆经过点和点,求椭圆的标准方程。 4.求中心在原点,焦点在坐标轴上,且经过两点的椭圆标准方程。 知识点五共焦点的椭圆方程的求解 一般地,与椭圆共焦点的椭圆可设其方程为。 例4、过点(-3,2)且与有相同焦点的椭圆的方程为() 变式练习5.求经过点(2,-3)且椭圆有共同焦点的椭圆方程。 知识点六与椭圆有关的轨迹问题的求解方法 与椭圆有关的轨迹方程的求解是一种很重要的题型,教材中的例题就是利用代入求球轨。迹,其基本思路是设出轨迹上一点和xxx曲线上一点,建立其关系,再代入。 例5、xxx圆,从这个圆上任意一点向轴作垂线段,点在上,并且,求点的轨迹。 知识点七与弦的中点有关问题的求解方法 直线与椭圆相交于两点、,称线段为椭圆的相交弦。与这个弦中点有点的轨迹问题是一类综合性很强的题目,因此解此类问题必须选择一个合理的方法,如“设而不求”法,其主要特点是巧代线段的斜率。其方程具体是:设直线与椭圆相交于两点,坐标分别为、,线段的中点为,则有 ①式-②式,得,即 通常将此方程用于求弦中点的轨迹方程。 例6.xxx:椭圆,求: (1)以P(2,-1)为中点的弦所在直线的方程; (2)斜率为2的相交弦中点的轨迹方程; (3)过Q(8,2)的直线被椭圆截得的弦中点的轨迹方程。 第二部分:巩固练习 1.设为椭圆的焦点,P为椭圆上一点,则的周长是() .无法确定 2.椭圆的两个焦点之间的距离为() 3.椭圆的一个焦点是(0,2),那么等于() 4.xxx椭圆的焦点是,P是椭圆上的一个动点,如果延长到,使得,那么动点的轨迹是() A.圆B.椭圆C.双曲线的一支D.抛物线 5.xxx椭圆的焦点在轴上,则的取值范围是__________. 6.椭圆的焦点坐标是___________. 7.椭圆的焦距为2,则正数的值____________. 数学学习方法 1、建立数学纠错本。做作业或复习时做错了题,一旦搞明白,决不放过,建立一本错误登记本,以降低重复性错误,不怕第一次不会,不怕第一次出错,就怕下一次还犯同样的错误把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、 防错。达到:平时作业、课外做题及考试中,对出错的数学题建立错题集很有必要。 2、记忆数学规律和数学小结论。 3、经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。 4、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位。 5、理解和弄懂所学的数学知识,知其然并知其所以然。学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些新的解法或产生新的认识等。 6、把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容。这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习。 怎么样才能打好数学基础 第一,重视数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,学生缺乏对概念的理解。 还有一部分同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢? 第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。 同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果学生不会做到这一点那么久而久之,不会的数学题目还是不会。数学靠总结 第9篇
数学靠总结 第10篇
数学靠总结 第11篇
数学靠总结 第12篇
数学靠总结 第13篇