圆柱的总结 第1篇
1、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。
2、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了平方分米,那么这根木头原来的体积是多少?
3、用一块长厘米、宽厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少?
4、将一块长方形铁皮,阴影的部分,刚好制成一个油桶,求这个油桶的体积。
5、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求这个圆柱体木块的体积。
6、一个底面积是10平方厘米的圆柱,侧面展开后是一个正方形,求这个圆柱的侧面积。
7、在一个正方体纸盒中恰好能放入一个体积为立方厘米的圆柱体卷纸,求这个正方体的容积。
8、求圆锥的侧面积和体积。(单位:cm)
9、xxx新买了一支净含量54cm3的牙膏,牙膏的圆形出口的直径为6mm,他早晚各刷一次牙,每次挤出的牙膏长约20mm,这支牙膏估计能用多少天?
10、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米,两个圆柱各高多少厘米?
11、在一只底面半径为20cm,高为40cm的圆柱形玻璃瓶中,水深16厘米,要在瓶中放入长和宽都是16cm.,高30cm的一块长方体铁块。使其一面紧贴玻璃瓶底面。如果把铁块横着放入玻璃瓶完全浸没水中,瓶中的水会升高多少cm?如果把铁块竖着放入玻璃瓶,瓶中的水将会升高多少cm?
12、一个直角三角形的三边长度为3厘米,4厘米,5厘米,分别以这三条边为轴旋转一xxx的立体图形。它们的体积各是多少?
13、把一个圆柱体切开,拼成一个与它等底等高的长方体,这个长方体的表面积比圆柱体多20平方厘米,若圆柱的底面周长是15厘米,圆柱的体积是多少立方厘米?
14、甲乙两个圆柱体容器,底面积之比是2:3,甲中水深6厘米,乙中水深8厘米,现在往两个容器中加入同样多的水,直到两容器中的水深相等,求这时容器中水的高度是多少厘米?
15、一个圆柱与一个圆锥的体积相等,圆柱的高与圆锥的高之比是4:9,圆锥的底面积是20平方厘米,圆柱的底面积是多少平方厘米?
圆柱的总结 第2篇
六年级圆柱圆锥测试题
一.填空题。(每题2分,共26分)
1.把圆柱的侧面展开可以得到一个长方形,这个长方形的长等于圆柱的( ),宽等于圆柱的( )。
2.一个圆柱的底面半径是3分米,高是5分米,它的底面积是( ),表面积是( ),体积是( )。
3.一个圆柱和圆锥等底等高,圆柱的体积是立方分米,圆锥的体积是( )立方分米。
4.一个圆柱和一个圆锥的体积都是立方分米,底面积都是6平方分米,那么圆柱的高是( )分米,圆锥的高是( )分米。
5.把一个边长是4厘米的正方体xxx一个最大的圆锥体,这个圆锥的底面半径是( )厘米,高是( )厘米。
6.一个圆锥的体积是立方米,与它等底等高的圆柱的体积是( )。
7.把一个底面周长是厘米的圆柱侧面展开,得到一个正方形,这个圆柱的高是( )厘米。
8.一个圆锥的体积是立方米,底面半径是2米,它的高是( )米。
9.2平方分米5平方厘米 = ( )平方分米 ; 升 = ( )毫升
10.一个底面直径是0厘米、高是20厘米的圆柱体,如果把它沿直直径垂直于底面切成两半,表面积增加了( )平方厘米。
11.一个圆柱的侧面积是942平方分米,高是6分米,它的底面积是( )。
12.把一个圆柱的底面半径扩大2倍,高不变,底面周长扩大( )。
13.一个圆柱的高是5分米,侧面积是平方分米,体积是( )。
二.判断(每题1分,6分)
1.圆柱的侧面展开图不可能是平行四边形。 ( )
2.圆锥的体积是圆柱体积的 。 ( )
3.把正方形木块xxx一个最大的圆柱,则此圆柱的直径与高相等。 ( )
4.一个圆柱体的高扩大2倍,底面积缩小2倍,它的体积不变。 ( )
5.两个圆柱的侧面积相等,它们的体积也一定相等。 ( ) 6.圆柱的高有无数条,圆锥的高只有一条。 ( ) 三.选择。(每题2分,共16分)
1.将一个圆柱体铝块熔铸成圆锥体,它的( )不变。
A.体积 B. 表面积 C.底面积 D.侧面积
2.一个圆锥的底面半径与高的比是1 :4,它与同底同高的一个圆柱体的体积之比是( )
A.1 :4 B.3 :4 C.1 :3 D.1 :8
3.一个圆柱侧面展开是正方形,这个圆柱底面周长与高的比是( )
A.2π:1 B.1 :1 C.π :1 D.无法确定
4.底面积、体积分别相等的圆柱体和圆锥体,如果圆锥的高是15厘米,那么圆柱的高是( )。
A.5厘米 B.15厘米 C.30厘米 D.45厘米
5.“压路机的滚轮转动一周能压多少路面”指( )
A.滚轮的两个圆面积 B.滚轮的侧面积 C.滚轮的.表面积
6.一个长方形的长是6厘米,宽是2厘米。以它的长为轴旋转一周所得到的圆柱体的体积是( )。
A.立方厘米 B.立方厘米 C.立方厘米 D.立方厘米
7.将一个圆柱体的底面半径扩大2倍,高不变,那么体积( )。
A.扩大2倍 B. 扩大4倍 C. 扩大8倍
应用题。(每题5分,共40分)
1.做5节相同的圆柱形通风管,通风管的底面直径是80厘米,长米。做这些通风管至少需要多少平方米铁皮?(用进一法取近似值,得数保留整数)
2.把一个底面半径是4厘米,高是9厘米的铁制圆锥放入盛满水的桶里,将有多少立方厘米的水溢出?
3.把一根长米,底面直径是2分米的圆柱形钢材平均分成3段,表面积增加了多少平方分米?
4.一个圆锥形沙堆,底面半径是1米,高是米。如果每立方米沙重吨,这堆沙约中多少吨?(保留一位小数。)
5.一个圆锥形稻谷堆,底面周长是米,高是米。如果每立方米稻谷重吨,这堆稻谷重多少吨?(得数保留整数)
6.把一块长6厘米,宽4厘米,高5厘米的铁块熔铸成一个高15厘米的圆锥,这个圆锥的底面积是多少平方厘米?
7.一个长方体,底面是一个正方形,底边长是4分米,高是8分米,完全浸入到一个盛满水的圆柱形容器里,容器的底面积为32平方分米。水面会升高多少厘米?
8.某饮料公司计划生产体积是200毫升的饮料罐,尺寸如图(单位:厘米)。你认为哪种形状的饮料罐比较省料,为什么?(计算过程中得数保留两位小数)
圆柱的总结 第3篇
六年级下册圆锥圆柱数学知识点
1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。
2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。
圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。
圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
圆柱体积比等底等高圆锥体积多2倍。
圆锥体积比等底等xxx体积少。
(1)等底等高:V锥:V柱=1:3
(2)等底等体积:h锥:h柱=3:1
(3)等高等体积:S锥:S柱=3:1
题型总结:
高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。
半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍
xxx最大体积的问题:
正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长
长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽>高)圆柱圆锥高等于长方体高
浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。
等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。
练习题
1一个圆柱和一个圆锥等底等高,圆柱的体积是48立方厘米,那么圆锥的体。积是( ),如果圆锥的体积是36立方厘米,圆柱的体积是( )。
2.把一个圆柱xxx一个最大的圆锥,这个圆柱的体积是立方分米,xxx的圆锥的体积是( )立方分米,削去的体积是( )。
3. 把一个圆柱xxx一个最大的圆锥,这个圆锥的体积是立方分米,削去的体积是( )立方分米,原来圆柱的体积是( )。
4.一个圆柱的底面半径是3㎝,高是2㎝,与它等底等高的圆锥体的体积是( )。
5.一个圆柱与一个圆锥等底等高,圆锥的体积是立方厘米,该圆柱的体积比圆锥的体积多( )立方厘米。
6.等底等高的圆柱和圆锥,已知它们的体积之差是24立方分米,则圆柱的体积是( )立方分米,圆锥的体积是( )。
数学最大的数和最小的数
最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。
目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。
没有最小的数字,但有最小的自然数,就是“0”。
小学数学条形统计图知识点
(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。
(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。
(3)取一个单位长度表示数量的多少要根据具体情况而确定
(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
(5)制作条形统计图的一般步骤:
a) 根据图纸的大小,画出两条互相垂直的射线。
b) 在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
d) 按照数据的大小画出长短不同的直条,并注明数量。